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Abstract

The rise of sensor deployments, uptake of 
the Internet of Things (IoT), and new manifes-
tations of sensing systems (e.g., crowd sensing, 
M2M-driven sensing, cloud sensing) has resulted 
in a tide of sensed data that is potentially drown-
ing our communication resources and hinder-
ing big data analytics with superfluous data. We 
argue that efficient management of IoT systems 
in smart communities and cities lies not in sens-
ing systems alone, but in the expedited funneling 
and processing of data as we attempt to prune 
the unnecessary and build on the valuable. The 
quest for energy efficiency that dominated sen-
sor networks for so long is now matched with a 
more pressing demand for access ubiquity and 
real-time operation. We highlight how big data 
became a challenge in sensing systems, then 
elaborate on the status quo in managing this 
challenge under different research umbrellas. We 
draw upon three planes that encompass current 
and future developments for the management 
of big sensed data (BSD), namely resources, 
data, and information planes, detailing their per-
tinent challenges and how evolving solutions can 
streamline their contributions in light of others. 
We conclude by highlighting core challenges 
rising across these three planes, and potential 
solutions to addressing synergy in coping and 
scaling with BSD.

Understanding Big Sensed Data
The generation of sensed data is growing at 
unprecedented levels, raising multi-faceted chal-
lenges in how underlying communication infra-
structures can cope with this growth, and how 
services could build on top of this heteroge-
neous wave of data. Specifically, data generated 
over diverse sensing systems, Internet of Things/
machine-to-machine (IoT/M2M) systems, and 
wireless sensor networks (WSNs) are increasingly 
disparate in quality and value.

We highlight the growing challenge of han-
dling sensed data flows, and potential directions 
in enabling real-time sense making services over 
such data after it is fused and quantified. This is 
not to undermine the challenge of growing data 
size under traditional big data research, but to 
elicit the elastic mandates of collecting, aggre-
gating, reporting, pruning, and communicating 
sensed data in a scalable and ubiquitous frame-
work.

Sensing systems extend far beyond the tra-
ditional view of WSNs. With the rapid increase 
in IoT devices that are capable of sensing and 
reporting, many sensing architectures are built on 
devices with abundant resources (e.g., wearable 
devices, vehicles). IoT and M2M systems alone 
are projected to dominate 46 percent of global 
connections and generate 6.3 exabytes by 2020 
[1].

Today, the proliferation of sensing systems are 
spawning many sensing paradigms, which include 
public sensing, participatory sensing, and cloud-
based sensing, to name a few. They mainly dif-
fer in how we engage users in sensing, that is, by 
active participation to collect specific data, or by 
mandating a group of devices to passively sense 
and report data. An interesting overview of these 
systems is presented in [2]. Cloud-based sensing 
systems leverage cloud access to report data for 
(mostly) offline processing and queries, where-
as public/participatory sensing systems typically 
build on proprietary networks with varying con-
nectivity mandates. 

A major hindrance in most of these sensing 
systems lies in the inherent framework: crowd-so-
licited devices seldom enable real-time access 
to data, as they rely on participation from users. 
More critically, the fidelity, trust, and accuracy of 
data is always marred by the fact that it is “pub-
licly” solicited, except for scenarios when the 
application mandates the use of specific (pre-cal-
ibrated) sensors [3]. Moreover, the utility and 
uptake of these sensing systems is challenged by 
privacy preservation for contributing devices, as 
well as security concerns.

Emerging research in establishing crowd-at-
tributed trust levels and verifying data contribu-
tions across trusted vs new users is pushing the 
envelope in these sensing systems. However, the 
main challenge in these systems lies in interoper-
ability, in addition to competing for the sensing 
resources/devices that would “adopt” their ser-
vice architecture.

In light of all these islandic systems, we define 
big sensed data (BSD) as the exponential growth 
of data collected from heterogeneous data sourc-
es, and the ensuing challenges in sense-making 
applications. That is, BSD is manifested in the 
evolution of sensing systems, in both sensing 
resources and data produced, that are present-
ing critical challenges in heterogeneous resource 
management and adaptive frameworks for oper-
ation across sensing systems. BSD is a growing 

Sharief M.A. Oteafy and Hossam S. Hassanein

IMMINENT COMMUNICATION TECHNOLOGIES FOR SMART COMMUNITIES

The rise of sensor deploy-
ments, the uptake of the 
IoT, and new manifesta-
tions of sensing systems 
have resulted in a tide 
of sensed data that is 
potentially drowning our 
communication resources 
and hindering big data 
analytics with superfluous 
data. The authors argue 
that efficient manage-
ment of IoT systems in 
smart communities and 
cities lies not in sensing 
systems alone, but in the 
expedited funneling and 
processing of data as 
we attempt to prune the 
unnecessary and build on 
the valuable.

Sharief M. A. Oteafy is with DePaul University; Hossam S. Hassanein is with Queen’s University.
Digital Object Identifier:
10.1109/MCOM.2018.1700557

Big Sensed Data: Evolution, Challenges, and a 
Progressive Framework



IEEE Communications Magazine • July 2018 109

phenomenon that transcends networking and 
storage primitives, to more pressing challenges in 
building applications and services on top of heter-
ogeneously produced data.

Open Challenges in BSD
As data trickles through the network from sensors 
all the way to services, many intermediate archi-
tectures are involved, raising issues of redundan-
cy, pruning discrepancies, data loss, intermediate 
storage and accessibility, lossy fusion, as well as 
access rights. Ultimately, we need to carefully cal-
ibrate the quality of information (QoI) that results 
from these sensors to better serve applications 
and services built on top of this information.

In coping with the BSD in smart cities, there 
are multiple challenges to be addressed. We 
hereby present the core challenges, and then 
overview the status quo in managing BSD under 
different research domains. This brief survey leads 
to a discussion on the three planes that encom-
pass BSD research. This tri-plane view presents a 
layered approach to understanding current voids 
in BSD management, and guides potential direc-
tions under each plane in light of cross-plane and 
intra-plane interactions.

Where Shall We Process?
As we evolve into BSD, the locality of data pro-
cessing (aggregation, fusion, sense-making pro-
cesses, and service composition) are highly 
application-dependent, and directly impact our 
access and transport of data. The rise of cloud/
fog computing infrastructures [4] now enable 
data processing much closer to the region of 
interest, thereby retaining more context for prun-
ing and fusion, thus reducing traffic load and 
the ensuing big data impact. The rise of cloudlet 
access to facilitate near-field offloading to cloud 
services, along with recent research on edge ana-
lytics and edge computing to support IoT services 
and architectures [5], present unique frameworks 
for leveraging BSD proliferation in decentralized 
operation.

Funneling Effect (Hierarchical Sensor Fusion)
Big data has to be tackled closer to the source, 
with proactive mechanisms for fusion and 
pruning [6] aimed at reducing irrelevant/infe-
rior content to relieve the network backbone. 
This directly impacts BSD scalability and access 
time for information by ubiquitous services, and 
aids rapid distribution of content for real-time 
sense making processes, especially for emergen-
cy response systems. However, heterogeneous 
architectures inherently introduce hierarchical 
frameworks of operation, whereby not all data 
sources are directly accessible, and much of the 
context is only visible on partial layers in these 
systems. Therefore, a core challenge lies in 
addressing real-time hierarchical sensor fusion 
in BSD, with meta-tagging of information and 
ensuring loss-less context fusion.

Regulating Flow across Sensing Systems

A critical challenge lies in naming and identifying 
data flows, based on content, source, destination 
service/application, or a combination of these fac-
tors. Ultimately, the quest for data calibration at 
each stage — across sensing systems — raises com-

patibility and interoperability challenges, espe-
cially as the end user is only interested in quality 
data under clear service level agreements (SLAs), 
despite the heterogeneity of underlying infrastruc-
ture(s).

Control flow is another challenge in realizing 
BSD, especially as we envision real-time feedback 
cycles to control the flow of data and interplay of 
resources across BSD planes. A major research 
challenge lies in regulating the policies and access 
management frameworks to probe, enlist, cali-
brate, fuse, valuate, and compensate resources in 
BSD, while managing their operational mandates 
in decentralized schemes.

Coping with Heterogeneous Data Sources

As we diversify the sensing systems that provide 
data in any given environment, we are faced with 
the challenge of heterogeneous data sources that 
often conflict, and mandate rigorous measures 
for weeding out false positives and anomalies. 
That is, establishing adaptive measures for the 
quality of data (QoD) raises multiple challenges. 
This entails gauging QoD thresholds, especially as 
some applications mandate lower QoD than oth-
ers. Also, a challenge lies in defining the metrics 
that affect QoD. If QoD is confined to “expect-
ed” reports based on a given neighborhood, how 
does that affect detecting true-positive anomalies? 
This yields multiple challenges in defining con-
text-aware QoD, which reacts to variations in the 
environment, and is not simply mandated by the 
services.

Trust, Privacy, and Security Barriers

A foundational challenge in soliciting crowd data 
is establishing trust in the data we collect, ensur-
ing the privacy of those who provide it (even via 
seamless/passive sensing), and preventing securi-
ty breaches of the collected data and its provid-
ers. Recent advances in cloud-based security and 
IoT security are picking up pace [7], such as the 
adoption of the Jasper system by Cisco for their 
IoT platform, where connection security and data 
encryption drive IoT communication.

However, there are core challenges with 
scaling these systems over BSD resources. 
First, as more heterogeneous and multi-propri-
etary devices report data, there is a question 
of resourcefulness to carry out data encryption 
and ensure secure communication in relaying 
that data. More critically, a growing need for 
distributed policy management should address 
access rights and soliciting (potentially third-par-
ty) components to anonymize data and still 
maintain links to the producing resources to 
enable quality of resource (QoR)-based cali-
bration and trust management [2]. We argue 
for incorporating degrees of trust, encryption, 
secure communication, and anonymization in 
the QoR calibration meta-data to empower 
receiving services in selecting the data/resourc-
es that meet its required SLAs.

Enabling BSD Information Services

Most information services are limited by the 
resources deployed at the design stage. A new 
service typically mandates deploying its own 
new sensing resources. To provide truly scal-
able information services, the underlying sens-
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ing architecture should inherently feed data 
into a scalable information repository on which 
services can be built. Thus, a new service might 
only require augmenting current resources with 
those that suffice to meet the new service. This 
opens the door for simple services (requiring 
only specific data feeds) and even allows for 
the orchestration of services, which are built 
on data feeds from raw sensors as well as other 
services. For example, a simple heat monitoring 
service would mandate feeds from distributed 
temperature sensors, but an advanced weather 
prediction system would require a combination 
of underlying services to yield a comprehensive 
weather information service.

The Status Quo

Many of the aforementioned challenges have 
been disparately addressed under different 
research umbrellas. At the heart of data process-
ing lies a significant body of research on big data 
analytics. While we are focused on BSD from the 
data generation point of view, it is important to 
understand the machine learning tools (e.g., sup-
port vector machines and K-nearest neighbors) 
that are heavily utilized in big data analytics, and 
how they are used to prune and analyze big data 
streams. Moreover, significant efforts are being 
invested in big data analytics solutions, such as 
Hadoop, Spark, and MapReduce, to handle the 
increasing influx of data streams that require 
cleaning and sense-making. To summarize, Table 
1 overviews major research areas that share 
common challenges with BSD management, and 
which of the three planes may yield insights on 
their development. This primarily contrasts exist-
ing research directions against a holistic view of 
BSD management.

A Tri-Plane Approach to BSD
Our quest for scaling with BSD lies not in man-
aging and pruning individual flows of data from 
all sensing systems, but inherently in synergizing 
them to pool data in manageable and non-redun-
dant flows. All of our requirements for granularity, 
time latency, accuracy, and reliability should form 
a rigorous scale for tagging reported data and 
pruning data flows closer to sources.

The spectrum of challenges lend themselves 
to three distinct planes, as they mandate minimal 
control across the planes, and more autonomous 
operation and management in every plane. 
That involves viewing BSD challenges in order 
of soliciting data from heterogeneous resourc-
es (resources plane), identifying the quality and 
usability of data on a scalable data plane, and 
quantifying the quality and value of information 
polled from all these resources toward a scalable 
information plane. Such a tri-plane framework is 
depicted in Fig. 1.

Resources in the bottom plane are probed 
via a number of access schemes (e.g., NFC for 
very short-range communication, Bluetooth and 
ZigBee for short-range, and WiFi for long-range), 
which then provide crude data to the data plane. 

Table 1. Overview of research areas addressing similar or complementary challenges to BSD.

BSD challenge
Addressed in 
research under:

Contrasting solution contexts Potential synergy with BSD planes

Processing tiers
Cloud/edge 
computing

Attempts to balance load, capacity, and 
communication cost

Insights into information and data 
planes from offloading thresholds

Data processing from 
source to service

Stream computing
Focused on allocating computing resources to 
carry out hierarchical data analytics

Data and information planes

Heterogeneous data 
sources

Multi-modal fusion
Focused on data alignment and event 
classification from multiple feeds about a 
given event

Resource and data planes when 
fusing single-stream data

Trust, privacy, and 
security

Access control in 
distributed systems

Focused on policy management and updates 
in distributed environments

Resource plane as data is produced 
and pruned by access rights

Information services
Ubiquitous service 
discovery

Mostly focused on matching of service 
requests with providers under cost and quality 
constraints

Data and information planes, as they 
establish real-time SLA negotiation

Figure 1. Big sensed data planes and intermediate infrastructures.
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At this stage, hierarchical fusion techniques take 
place in light of reported resource attributes, 
and across different data repositories that collect 
data from individual sensing systems and het-
erogeneous data sources. Finally, a more broad 
context-based analysis of QoD and QoI aid in 
fine-tuned data fusion to feed into the information 
plane. We envision that services will run on top of 
the information plane having mandated specific 
thresholds for requested QoI indicators.

In Fig. 1 we highlight the intermediate infra-
structures required to communicate the data 
(access networks), and carry out data fusion 
and pruning, before we can realize ubiquitous 
QoI-BSD repositories. This flow of data is pre-
sented in Fig. 2. The remainder of this article 
details these three planes, and then concludes 
with major challenges in the quest to address 
and build upon BSD. Under each plane, we 
delve into the core challenges that face ubiqui-
tous BSD scalability, and address the interplay 
of these challenges in light of current research 
directions and future outlook.

Resources Plane
To appreciate the scope of BSD, we must encom-
pass all sensed data sources. We broadly refer 
to all data producers as resources, which could 
be physical (e.g., sensors) or virtual (e.g., smart 
meter status reports or Twitter-based feeds). 
Understanding the capacity and attributes of a 
data source is pivotal to determining the QoD 
it produces. This spans a spectrum of attributes 
that dictate the QoR and its usability. Generally, 
each resource must be identified by its location, 
functional capacity, operation levels, temporal 
availability, access rights, energy consumption for 
every operation level, and ultimately its region of 
fidelity.

Capitalizing on Heterogeneous Resources

The heterogeneity of resources feeding into BSD 
presents a double-edged reality. On one hand, 
we can capitalize on diverse resources to provide 
sensed data, with varying qualities and in differ-

ent contexts (e.g. angle of view, type of hardware 
used, trust level in resource). However, their diver-
sity presents a challenge in calibrating the QoR to 
aid resilient sense-making processes. For example, 
a road monitoring application may only wish to 
rely on resources “verified” by the Department of 
Transportation, or a surveillance system may wish 
to exclude cameras that produce inferior images. 
This results in most sensing systems depending on 
proprietary resources that are calibrated to the 
desired application.

A scalable BSD ecosystem must capitalize on 
the heterogeneity of resources deployed, rather 
than mitigate variability in data. That is, instead 
of aiming to deploy new resources to yield the 
sensed data required, we should investigate the 
resources already in place and attempt to cali-
brate their QoR in light of our sensing require-
ments. This view of how sensing systems should 
thrive and grow in collaboration and synergy is 
detailed in our earlier work [8].

Variability vs. Redundancy

As we deploy more resources, we face the chal-
lenge of resource redundancy across sensing 
systems. We address the abundance of resourc-
es deployed under one paradigm (overlapping 
WSNs) and across sensing systems (e.g., WSNs 
co-located with crowd-sensing systems). The 
notion of redundancy is only truly captured when 
we abstract the definition of a sensing resource 
and detail its attributes.

A core challenge lies in rigorous attribute mod-
els for establishing the QoR deployed/probed in 
a given region and their yielded QoD. Then we 
can uniformly assess the QoR across their vari-
ability, and decide if we indeed need to introduce 
redundant resources to achieve new functional 
gains. Variability refers to the new set of attributes 
a resource demonstrates in variance to existing 
resources. For example, a new resource with the 
same functional transceiver (e.g., ZigBee) but 
with extended range or less energy consumption 
introduces variability in the functional spectrum of 
communication [9].

Figure 2. Data flow from resources to information services in BSD, highlighting the unique impact of 
coping with sensed data from heterogeneous resources in smart sensing systems, and the pruning, 
calibration, profiling, and fusion stages that introduce bottlenecks for selective data propagation in BSD 
toward the final valuation of data for information services in smart cities.
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Quest for Uniform QoR Measurement
Establishing a uniform scale for expressing the 
attributes of current resources, and gauging the 
QoRs and QoD in a given region of interest, are 
critical research directions. Existing quality of ser-
vice (QoS) definitions in networks have focused 
on perceived measures of performance, including 
metrics such as packet loss rates, jitter, transfer 
bit rates, and delays in communication. Newer 
models, such as the QoXphere [10], are more 
inclusive of user-centric views of quality. 

In the context of BSD, it is important to build 
on intrinsic performance metrics of network com-
ponents, in addition to hardware profiles of sens-
ing resources, to provide a uniform and robust 
attribute-based representation of QoR. This repre-
sentation must aid in rapid calibration of resourc-
es to judge both the QoR and resulting QoD as 
it feeds into the BSD cycle. In Fig. 1, this is not 
only confined to the resources plane, but must 
also be incorporated in fusion frameworks prior 
to pushing the data to BSD data repositories (the 
top level).

Data Plane: Sensing vs. Datafication
We broadly classify data sources into two cate-
gories: explicit sensing and “datafication” of the 
environment. A phenomenon, an anomaly, and 
sheer sampling of physical properties in a given 
environment are all triggers for sensors. In the for-
mer category, we aim to improve our capacity to 
detect such triggers, and report them under man-
dates of accuracy, timeliness, localization, and 
often the pertinent energy footprint.

Datafication, in its broader sense, spans captur-
ing data on everyday processes that are not nec-
essarily part of a physical phenomenon [11]. This 
includes M2M control and maintenance informa-
tion, data flows from social network feeds (e.g., 
trends and popularity scores of content), and 
reports from sensors in wearable technologies. In 
fact, recent market surveys are citing wearables 
as the IoT domain of highest market penetration, 
with the spectrum of e-health growing to include 
many promising directions [12]. Such user-cen-
tric data offers great insights in applications that 
span epidemiology, crowd behavior, commute 
patterns, and general societal well being.

Data Representation

A core challenge in BSD is the inherent dispar-
ity in data representation. As sensing systems 
evolved, each design entailed its own representa-
tion for data. We dissect data representation into 
two distinct phases: its form as reported directly 
from the data sources (e.g., sensor node, smart 
device) and its representation on back-end sys-
tems (e.g., sink, cloud/server). It is important to 
distinguish between both phases as they typically 
reside on different resources, and affect ensuing 
calibration and fusion mechanisms.

The first phase is crucial to data fusion 
schemes; for example, simple WSNs aimed at 
minimizing packet sizes to reduce transmis-
sion time. Thus, much of the context of each 
sensed report had to be inferred by the receiv-
ing node(s), or ultimately at the sink. Any ana-
lytics mandate more information to be passed 
on by the originating device, hence incurring 
energy and processing load on the path to the 

source device. The gain was demonstrated early 
on in [13], where the need for aggregation as 
a means of reducing total communication in a 
network was important. Today, the sheer volume 
of redundant data is witnessed across deploy-
ments, even if individual networks implement 
fusion and/or aggregation.

The second phase, arguably more critical 
in BSD, is how we represent the data in each 
repository. Any effort to fuse data and enable 
sense-making services over multiple data sources 
mandates consistency in data representation. In 
this direction we could build on recent efforts in 
information-centric networks, which addressed 
naming consistency [14], especially as we scale 
with multiple producers in a paradigm that is con-
tent-centric.

QoD Calibration

Most efforts in measuring the quality of sensed 
data are confined to homogenous networks. 
This includes data filtering, detecting anomalies, 
faulty nodes, and cross-validation across nodes in 
a given region; that is, those expected to report 
similar results. As data is aggregated toward col-
lection points (e.g., sink/base station/cloudlet), 
fusion techniques mostly entail direct averaging 
of data after excluding outliers, or in more recent 
research adopting a fuzzy logic approach [6] to 
assign different weights to “more trusted” reports 
(e.g., by anchor nodes, or in correlation with a 
fitness function pertinent to remaining energy or 
reporting history).

A measure of quality is thus attributed to the 
resources themselves and the data they produce 
in contrast to neighboring nodes. However, this 
method is heavily dependent on the assump-
tion of homogeneity. More importantly, it often 
offloads most of the data calibration task to the 
sink, which is both a waste of resources (to com-
municate low-quality data) and risks losing the 
context of original data points. In addition, as we 
head into heterogeneous systems that tap directly 
(or even via sinks) to sensor nodes, this decision 
should be made closer to the sensing region to 
ensure that only high-quality data is allowed to tra-
verse the network; low-quality nodes can be duty 
cycled to conserve power and reduce medium 
contention, and heterogeneous cross-validation 
is enabled to improve QoD calibration closer to 
the source.

Data Fusion Granularities

Data fusion involves combining data from mul-
tiple sources to reach a decision. Many defini-
tions arise to specify the multiplicity of sensor 
inputs, their heterogeneity, and whether or not 
it depends on a priori knowledge about the con-
text of each data source [15]. In the context of 
sensing systems, sensor fusion has almost always 
been a quest in solidifying partial information 
from multiple sources, in contrast to aggregation 
schemes that assume full data but aim to reduce 
its size.

As BSD scales with homogeneous and hetero-
geneous networks, encompassing low-end nodes 
that have very limited resources, hierarchical 
fusion rises as another challenge. It is necessary 
to explore fusion as a factor of the underlying 
resources, and in correlation with the vitality of 
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data. Simply put, often simple averaging would 
suffice, especially in resource-constrained sen-
sors. The potential for QoD-based fusion with a 
feedback cycle in BSD is a core challenge, and 
underlines multiple directions of research, most 
prominently addressing the viability of introducing 
an active pruning mechanism to silence nodes 
and prune data along forwarding paths, and intro-
ducing reactive systems to calibrate and update 
QoD measures in real time based on data context 
and ensuing ontologies.

Information Plane
At the information plane, it is vital to balance QoI 
based on QoD metrics, and on SLA mandates for 
services built on such data. This is challenging, 
especially as the demand grows for ubiquitous 
services. Figure 2 presents a thorough view of 
data flow toward BSD information services.

Information services are coupled with data; 
thus, mandates for QoI and monetary exchange 
often come into play. The more sources, and the 
better the QoD and ensuing QoI, the better the 
service. Hence, a foundational block to establish-
ing ubiquitous information services is active cali-
bration of the QoI feeds.

The challenge in establishing QoI metrics with 
BSD lies in heterogeneity as well as context varia-
tion. Even if rigorous measures of QoI are in place 
to account for QoR and QoD, at given times 
(e.g., in emergency situations) we are interested 
in all data, rather than only ones that meet a pre-
set threshold of QoI. A scale has to be established 
that uniformly gauges QoI across heterogeneous 
resources, feeds, and ultimately providers. How-
ever, different SLAs might couple QoI calibration 
with data feeds, which compromises the goal 
of BSD in uniformly quantifying QoD and QoI 
across all resources and data flows. Although this 
has been partially addressed in ontology-based 
data integration, the challenge remains open in 
BSD frameworks.

Information processing is highly dependent on 
spatial and temporal properties of data, and must 
be captured in the evaluation of QoI. For exam-
ple, a redundant resource becomes more viable 
at times of high variation in reported data, at loca-
tions where fewer data sources are currently via-
ble, or in emergency situations. Thus, establishing 
QoI measures must adapt to the context.

BSD Proof of Concept

To demonstrate the interactions in a BSD frame-
work, Fig. 3 depicts a proof-of-concept emergen-
cy situation and the ensuing BSD reaction phases 
across the aforementioned planes. An emergency 
situation triggers the BSD framework to engage 
all viable resources in the region of concern, and 
via different access networks (e.g., 6LowPan and 
ZigBee for short-range sensors, NFC and BLE 
for wearable sensors, and WiFi and LTE for web-
based access and long-range reporting). All col-
lected data will be pushed onto data warehousing 
mechanisms that will store and fuse data with cur-
rent repositories, which will all feed into pruning 
and fusion mechanisms that adopt ontology-based 
heterogeneous fusion. This forms the basis of all 
real-time QoR calibration and action plans (e.g., 
silencing faulty/redundant resources or waking 
up/soliciting dormant resource as needed).

The ensuing QoI and profiling mechanisms will 
be triggered to evaluate the viability of informa-
tion before triggering and feeding into emergency 
services, which span notifying only the needed 
first responders, creating personalized evacuation 
plans, notifying those in need of nearby devices 
to use (e.g., automatic defibrillators), and push-
ing tailored emergency procedures (e.g., tending 
to a personal chronic condition triggered by the 
event).

BSD Outlook and Conclusions
We argue for a shift in focus from application-spe-
cific and tailored sensing applications, to a 
broader view of synergistic sensing systems. Spe-
cifically, this means targeting the growing demand 
for establishing quality indicators for data that 
potentiate its usability for real-time services which 
require scrutiny of their data sources. This is most 
prevalent in sense-making systems, especially in 
light of IoT developments and proliferation. The 
islandic development of current sensing systems is 
presenting critical challenges in handling the spur 
of BSD.

The future lies in coping with (and exploiting) 
existing resources to establish and benchmark 
QoRs, anchor validation parameters, establish 
trust in resources, and reduce the footprint of 
new applications by capitalizing on resources 
already there instead of deploying new ones.

Figure 3. An instance of the BSD framework reacting to an emergency situation in smart cities.
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True ubiquity in sensing infrastructures is 
inherently coupled with crowd support and 
poses game changing designs in BSD. The case 
for incentivizing smart devices and crowds [2] to 
feed data into the BSD architecture is both critical 
and difficult. For one, there must be a monetary/
bartered value associated with reported data, cor-
related with its quality, timeliness, accuracy, and 
even reputation, in light of the available hardware.

Ultimately, the end user might decide on the 
acceptable QoI thresholds for input data, wheth-
er or not this is a design function of the service in 
question. The user could actively include/exclude 
certain data sources/flows that fail a given thresh-
old, or the service/application can pursue cali-
bration without user involvement, depending on 
current context, user profile, and other settings. 
At some level in BSD, user-centric QoI calibration 
must take place, and this remains an open chal-
lenge, not necessarily because it is new, but mostly 
because it has thus far been application-dependent.

In adopting a scalable BSD framework, the 
anticipated leverage in economic, technological, 
and societal impacts are immense. To name a 
few, we will be able to reduce the cost of deploy-
ments, maintenance, and communication of 
devices to only those required to augment existing 
resources, which will inevitably improve the feasi-
bility of many information services as they would 
require a lower starting budget and upkeep. More 
importantly, other crowd-based services will be 
better incentivized to take part in more important 
sensing applications (e.g., reporting hazardous sit-
uations) as they enlist their resources (e.g., smart-
phones) in the resource pool, and provide rapid 
dissemination of information before municipal 
services can even reach the area of concern.
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